Rank connectivity and pivot-minors of graphs
نویسندگان
چکیده
The cut-rank of a set X in graph G is the rank X×(V(G)?X) submatrix adjacency matrix over binary field. A split partition vertex into two sets (X,Y) such that less than 2 and both Y have at least vertices. prime (with respect to decomposition) if it connected has no splits. k+?-rank-connected for every vertices with k, |X| or |V(G)?X| k+?. We prove 3+2-rank-connected 10 3+3-rank-connected pivot-minor H |V(H)|=|V(G)|?1. As corollary, we show excluded class graphs rank-width most k (3.5?6k?1)/5 k?2. also pivot-minors 16
منابع مشابه
Graphs of Small Rank-width Are Pivot-minors of Graphs of Small Tree-width
We prove that every graph of rank-width k is a pivot-minor of a graph of tree-width at most 2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors o...
متن کاملGraphs of Small Rank-width are Pivot-minors of Graphs of Small Tree-width
We prove that every graph of rank-width k is a pivot-minor of a graph of tree-width at most 2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors o...
متن کاملColoring graphs without fan vertex-minors and graphs without cycle pivot-minors
A fan Fk is a graph that consists of an induced path on k vertices and an additional vertex that is adjacent to all vertices of the path. We prove that for all positive integers q and k, every graph with sufficiently large chromatic number contains either a clique of size q or a vertex-minor isomorphic to Fk. We also prove that for all positive integers q and k ≥ 3, every graph with sufficientl...
متن کاملEccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
متن کاملRank-width and vertex-minors
The rank-width is a graph parameter related in terms of fixed functions to cliquewidth but more tractable. Clique-width has nice algorithmic properties, but no good “minor” relation is known analogous to graph minor embedding for tree-width. In this paper, we discuss the vertex-minor relation of graphs and its connection with rank-width. We prove a relationship between vertex-minors of bipartit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2023
ISSN: ['1095-9971', '0195-6698']
DOI: https://doi.org/10.1016/j.ejc.2022.103634